Real Estate Law
FUSU: A Multi-temporal-source Land Use Change Segmentation Dataset for Fine-grained Urban Semantic Understanding
Fine urban change segmentation using multi-temporal remote sensing images is essential for understanding human-environment interactions in urban areas. Although there have been advances in high-quality land cover datasets that reveal the physical features of urban landscapes, the lack of fine-grained land use datasets hinders a deeper understanding of how human activities are distributed across the landscape and the impact of these activities on the environment, thus constraining proper technique development. To address this, we introduce FUSU, the first finegrained land use change segmentation dataset for Fine-grained Urban Semantic Understanding. FUSU features the most detailed land use classification system to date, with 17 classes and 30 billion pixels of annotations. It includes bi-temporal high-resolution satellite images with 0.2-0.5 m ground sample distance and monthly optical and radar satellite time series, covering 847 km
FUSU: A Multi-temporal-source Land Use Change Segmentation Dataset for Fine-grained Urban Semantic Understanding
Fine urban change segmentation using multi-temporal remote sensing images is essential for understanding human-environment interactions in urban areas. Although there have been advances in high-quality land cover datasets that reveal the physical features of urban landscapes, the lack of fine-grained land use datasets hinders a deeper understanding of how human activities are distributed across landscapes and the impact of these activities on the environment, thus constraining proper technique development. To address this, we introduce FUSU, the first fine-grained land use change segmentation dataset for Fine-grained Urban Semantic Understanding. FUSU features the most detailed land use classification system to date, with 17 classes and 30 billion pixels of annotations. It includes bi-temporal high-resolution satellite images with 0.2-0.5 m ground sample distance and monthly optical and radar satellite time series, covering 847 km 2 across five urban areas in the southern and northern of China with different geographical features.
Climate land use and other drivers impacts on island ecosystem services: a global review
Moustakas, Aristides, Zemah-Shamir, Shiri, Tase, Mirela, Zotos, Savvas, Demirel, Nazli, Zoumides, Christos, Christoforidi, Irene, Dindaroglu, Turgay, Albayrak, Tamer, Ayhan, Cigdem Kaptan, Fois, Mauro, Manolaki, Paraskevi, Sandor, Attila D., Sieber, Ina, Stamatiadou, Valentini, Tzirkalli, Elli, Vogiatzakis, Ioannis N., Zemah-Shamir, Ziv, Zittis, George
Islands are diversity hotspots and vulnerable to environmental degradation, climate variations, land use changes and societal crises. These factors can exhibit interactive impacts on ecosystem services. The study reviewed a large number of papers on the climate change-islands-ecosystem services topic worldwide. Potential inclusion of land use changes and other drivers of impacts on ecosystem services were sequentially also recorded. The study sought to investigate the impacts of climate change, land use change, and other non-climatic driver changes on island ecosystem services. Explanatory variables examined were divided into two categories: environmental variables and methodological ones. Environmental variables include sea zone geographic location, ecosystem, ecosystem services, climate, land use, other driver variables, Methodological variables include consideration of policy interventions, uncertainty assessment, cumulative effects of climate change, synergistic effects of climate change with land use change and other anthropogenic and environmental drivers, and the diversity of variables used in the analysis. Machine learning and statistical methods were used to analyze their effects on island ecosystem services. Negative climate change impacts on ecosystem services are better quantified by land use change or other non-climatic driver variables than by climate variables. The synergy of land use together with climate changes is modulating the impact outcome and critical for a better impact assessment. Analyzed together, there is little evidence of more pronounced for a specific sea zone, ecosystem, or ecosystem service. Climate change impacts may be underestimated due to the use of a single climate variable deployed in most studies. Policy interventions exhibit low classification accuracy in quantifying impacts indicating insufficient efficacy or integration in the studies.
Zoning in American Cities: Are Reforms Making a Difference? An AI-based Analysis
Salazar-Miranda, Arianna, Talen, Emily
Cities are at the forefront of addressing global sustainability challenges, particularly those exacerbated by climate change. Traditional zoning codes, which often segregate land uses, have been linked to increased vehicular dependence, urban sprawl, and social disconnection, undermining broader social and environmental sustainability objectives. This study investigates the adoption and impact of form-based codes (FBCs), which aim to promote sustainable, compact, and mixed-use urban forms as a solution to these issues. Using Natural Language Processing (NLP) techniques, we analyzed zoning documents from over 2000 U.S. census-designated places to identify linguistic patterns indicative of FBC principles. Our findings reveal widespread adoption of FBCs across the country, with notable variations within regions. FBCs are associated with higher floor-to-area ratios, narrower and more consistent street setbacks, and smaller plots. We also find that places with FBCs have improved walkability, shorter commutes, and a higher share of multi-family housing. Our findings highlight the utility of NLP for evaluating zoning codes and underscore the potential benefits of form-based zoning reforms for enhancing urban sustainability.
SAModified: A Foundation Model-Based Zero-Shot Approach for Refining Noisy Land-Use Land-Cover Maps
Pekhale, Sparsh, Sathish, Rakshith, Basavaraju, Sathisha, Sharma, Divya
Land-use and land cover (LULC) analysis is critical in remote sensing, with wide-ranging applications across diverse fields such as agriculture, utilities, and urban planning. However, automating LULC map generation using machine learning is rendered challenging due to noisy labels. Typically, the ground truths (e.g. ESRI LULC, MapBioMass) have noisy labels that hamper the model's ability to learn to accurately classify the pixels. Further, these erroneous labels can significantly distort the performance metrics of a model, leading to misleading evaluations. Traditionally, the ambiguous labels are rectified using unsupervised algorithms. These algorithms struggle not only with scalability but also with generalization across different geographies. To overcome these challenges, we propose a zero-shot approach using the foundation model, Segment Anything Model (SAM), to automatically delineate different land parcels/regions and leverage them to relabel the unsure pixels by using the local label statistics within each detected region. We achieve a significant reduction in label noise and an improvement in the performance of the downstream segmentation model by $\approx 5\%$ when trained with denoised labels.
EcoCropsAID: Economic Crops Aerial Image Dataset for Land Use Classification
Noppitak, Sangdaow, Okafor, Emmanuel, Surinta, Olarik
The EcoCropsAID dataset is a comprehensive collection of 5,400 aerial images captured between 2014 and 2018 using the Google Earth application. This dataset focuses on five key economic crops in Thailand: rice, sugarcane, cassava, rubber, and longan. The images were collected at various crop growth stages: early cultivation, growth, and harvest, resulting in significant variability within each category and similarities across different categories. These variations, coupled with differences in resolution, color, and contrast introduced by multiple remote imaging sensors, present substantial challenges for land use classification. The dataset is an interdisciplinary resource that spans multiple research domains, including remote sensing, geoinformatics, artificial intelligence, and computer vision. The unique features of the EcoCropsAID dataset offer opportunities for researchers to explore novel approaches, such as extracting spatial and temporal features, developing deep learning architectures, and implementing transformer-based models. The EcoCropsAID dataset provides a valuable platform for advancing research in land use classification, with implications for optimizing agricultural practices and enhancing sustainable development. This study explicitly investigates the use of deep learning algorithms to classify economic crop areas in northeastern Thailand, utilizing satellite imagery to address the challenges posed by diverse patterns and similarities across categories.
Heterogeneous Graph Neural Networks with Post-hoc Explanations for Multi-modal and Explainable Land Use Inference
Zhai, Xuehao, Jiang, Junqi, Dejl, Adam, Rago, Antonio, Guo, Fangce, Toni, Francesca, Sivakumar, Aruna
Urban land use inference is a critically important task that aids in city planning and policy-making. Recently, the increased use of sensor and location technologies has facilitated the collection of multi-modal mobility data, offering valuable insights into daily activity patterns. Many studies have adopted advanced data-driven techniques to explore the potential of these multi-modal mobility data in land use inference. However, existing studies often process samples independently, ignoring the spatial correlations among neighbouring objects and heterogeneity among different services. Furthermore, the inherently low interpretability of complex deep learning methods poses a significant barrier in urban planning, where transparency and extrapolability are crucial for making long-term policy decisions. To overcome these challenges, we introduce an explainable framework for inferring land use that synergises heterogeneous graph neural networks (HGNs) with Explainable AI techniques, enhancing both accuracy and explainability. The empirical experiments demonstrate that the proposed HGNs significantly outperform baseline graph neural networks for all six land-use indicators, especially in terms of 'office' and 'sustenance'. As explanations, we consider feature attribution and counterfactual explanations. The analysis of feature attribution explanations shows that the symmetrical nature of the `residence' and 'work' categories predicted by the framework aligns well with the commuter's 'work' and 'recreation' activities in London. The analysis of the counterfactual explanations reveals that variations in node features and types are primarily responsible for the differences observed between the predicted land use distribution and the ideal mixed state. These analyses demonstrate that the proposed HGNs can suitably support urban stakeholders in their urban planning and policy-making.
Deep autoregressive modeling for land use land cover
Krapu, Christopher, Borsuk, Mark, Calder, Ryan
Land use / land cover (LULC) modeling is a challenging task due to long-range dependencies between geographic features and distinct spatial patterns related to topography, ecology, and human development. We identify a close connection between modeling of spatial patterns of land use and the task of image inpainting from computer vision and conduct a study of a modified PixelCNN architecture with approximately 19 million parameters for modeling LULC. In comparison with a benchmark spatial statistical model, we find that the former is capable of capturing much richer spatial correlation patterns such as roads and water bodies but does not produce a calibrated predictive distribution, suggesting the need for additional tuning. We find evidence of predictive underdispersion with regard to important ecologically-relevant land use statistics such as patch count and adjacency which can be ameliorated to some extent by manipulating sampling variability.
Comparison of two data fusion approaches for land use classification
Cubaud, Martin, Bris, Arnaud Le, Jolivet, Laurence, Olteanu-Raimond, Ana-Maria
ABSTRACT: Accurate land use maps, describing the territory from an anthropic utilisation point of view, are useful tools for land management and planning. To produce them, the use of optical images alone remains limited. It is therefore necessary to make use of several heterogeneous sources, each carrying complementary or contradictory information due to their imperfections or their different specifications. This study compares two different approaches i.e. a pre-classification and a post-classification fusion approach for combining several sources of spatial data in the context of land use classification. The approaches are applied on authoritative land use data located in the Gers department in the south-west of France. Pre-classification fusion, while not explicitly modeling imperfections, has the best final results, reaching an overall accuracy of 97% and a macro-mean F1 score of 88%. 1. INTRODUCTION At the feature level, Fonte et al. (2018) identified building functions using Land Use (LU) describes the socio-economic human activity of a rule based classifications of OpenStreetMap (OSM), Facebook an area (e.g. Land al. (2022) identified building functions from images, POI and Use and Land Cover (LULC) maps are very useful for understanding, building footprint from Gaode map (authoritative database) and monitoring, planning and predicting the evolution of distance to OSM roads using a XGBoost classifier.
Land use/land cover classification of fused Sentinel-1 and Sentinel-2 imageries using ensembles of Random Forests
The study explores the synergistic combination of Synthetic Aperture Radar (SAR) and Visible-Near Infrared-Short Wave Infrared (VNIR-SWIR) imageries for land use/land cover (LULC) classification. Image fusion, employing Bayesian fusion, merges SAR texture bands with VNIR-SWIR imageries. The research aims to investigate the impact of this fusion on LULC classification. Despite the popularity of random forests for supervised classification, their limitations, such as suboptimal performance with fewer features and accuracy stagnation, are addressed. To overcome these issues, ensembles of random forests (RFE) are created, introducing random rotations using the Forest-RC algorithm. Three rotation approaches: principal component analysis (PCA), sparse random rotation (SRP) matrix, and complete random rotation (CRP) matrix are employed. Sentinel-1 SAR data and Sentinel-2 VNIR-SWIR data from the IIT-Kanpur region constitute the training datasets, including SAR, SAR with texture, VNIR-SWIR, VNIR-SWIR with texture, and fused VNIR-SWIR with texture. The study evaluates classifier efficacy, explores the impact of SAR and VNIR-SWIR fusion on classification, and significantly enhances the execution speed of Bayesian fusion code. The SRP-based RFE outperforms other ensembles for the first two datasets, yielding average overall kappa values of 61.80% and 68.18%, while the CRP-based RFE excels for the last three datasets with average overall kappa values of 95.99%, 96.93%, and 96.30%. The fourth dataset achieves the highest overall kappa of 96.93%. Furthermore, incorporating texture with SAR bands results in a maximum overall kappa increment of 10.00%, while adding texture to VNIR-SWIR bands yields a maximum increment of approximately 3.45%.